Convolves the input image with a bank of learned filters, and (optionally) adds biases.
More...
|
| ConvolutionLayer (const LayerParameter ¶m) |
|
virtual const char * | type () const |
| Returns the layer type.
|
|
| BaseConvolutionLayer (const LayerParameter ¶m) |
|
virtual void | LayerSetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Does layer-specific setup: your layer should implement this function as well as Reshape. More...
|
|
virtual void | Reshape (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs. More...
|
|
virtual int | MinBottomBlobs () const |
| Returns the minimum number of bottom blobs required by the layer, or -1 if no minimum number is required. More...
|
|
virtual int | MinTopBlobs () const |
| Returns the minimum number of top blobs required by the layer, or -1 if no minimum number is required. More...
|
|
virtual bool | EqualNumBottomTopBlobs () const |
| Returns true if the layer requires an equal number of bottom and top blobs. More...
|
|
| Layer (const LayerParameter ¶m) |
|
void | SetUp (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Implements common layer setup functionality. More...
|
|
Dtype | Forward (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Given the bottom blobs, compute the top blobs and the loss. More...
|
|
void | Backward (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
| Given the top blob error gradients, compute the bottom blob error gradients. More...
|
|
vector< shared_ptr< Blob< Dtype > > > & | blobs () |
| Returns the vector of learnable parameter blobs.
|
|
const LayerParameter & | layer_param () const |
| Returns the layer parameter.
|
|
virtual void | ToProto (LayerParameter *param, bool write_diff=false) |
| Writes the layer parameter to a protocol buffer.
|
|
Dtype | loss (const int top_index) const |
| Returns the scalar loss associated with a top blob at a given index.
|
|
void | set_loss (const int top_index, const Dtype value) |
| Sets the loss associated with a top blob at a given index.
|
|
virtual int | ExactNumBottomBlobs () const |
| Returns the exact number of bottom blobs required by the layer, or -1 if no exact number is required. More...
|
|
virtual int | MaxBottomBlobs () const |
| Returns the maximum number of bottom blobs required by the layer, or -1 if no maximum number is required. More...
|
|
virtual int | ExactNumTopBlobs () const |
| Returns the exact number of top blobs required by the layer, or -1 if no exact number is required. More...
|
|
virtual int | MaxTopBlobs () const |
| Returns the maximum number of top blobs required by the layer, or -1 if no maximum number is required. More...
|
|
virtual bool | AutoTopBlobs () const |
| Return whether "anonymous" top blobs are created automatically by the layer. More...
|
|
virtual bool | AllowForceBackward (const int bottom_index) const |
| Return whether to allow force_backward for a given bottom blob index. More...
|
|
bool | param_propagate_down (const int param_id) |
| Specifies whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id. More...
|
|
void | set_param_propagate_down (const int param_id, const bool value) |
| Sets whether the layer should compute gradients w.r.t. a parameter at a particular index given by param_id.
|
|
|
virtual void | Forward_cpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Using the CPU device, compute the layer output.
|
|
virtual void | Forward_gpu (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
| Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable.
|
|
virtual void | Backward_cpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
| Using the CPU device, compute the gradients for any parameters and for the bottom blobs if propagate_down is true.
|
|
virtual void | Backward_gpu (const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom) |
| Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_down is true. Fall back to Backward_cpu() if unavailable.
|
|
virtual bool | reverse_dimensions () |
|
virtual void | compute_output_shape () |
|
void | forward_cpu_gemm (const Dtype *input, const Dtype *weights, Dtype *output, bool skip_im2col=false) |
|
void | forward_cpu_bias (Dtype *output, const Dtype *bias) |
|
void | backward_cpu_gemm (const Dtype *input, const Dtype *weights, Dtype *output) |
|
void | weight_cpu_gemm (const Dtype *input, const Dtype *output, Dtype *weights) |
|
void | backward_cpu_bias (Dtype *bias, const Dtype *input) |
|
void | forward_gpu_gemm (const Dtype *col_input, const Dtype *weights, Dtype *output, bool skip_im2col=false) |
|
void | forward_gpu_bias (Dtype *output, const Dtype *bias) |
|
void | backward_gpu_gemm (const Dtype *input, const Dtype *weights, Dtype *col_output) |
|
void | weight_gpu_gemm (const Dtype *col_input, const Dtype *output, Dtype *weights) |
|
void | backward_gpu_bias (Dtype *bias, const Dtype *input) |
|
int | input_shape (int i) |
| The spatial dimensions of the input.
|
|
virtual void | CheckBlobCounts (const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top) |
|
void | SetLossWeights (const vector< Blob< Dtype > *> &top) |
|
template<typename Dtype>
class caffe::ConvolutionLayer< Dtype >
Convolves the input image with a bank of learned filters, and (optionally) adds biases.
Caffe convolves by reduction to matrix multiplication. This achieves high-throughput and generality of input and filter dimensions but comes at the cost of memory for matrices. This makes use of efficiency in BLAS.
The input is "im2col" transformed to a channel K' x H x W data matrix for multiplication with the N x K' x H x W filter matrix to yield a N' x H x W output matrix that is then "col2im" restored. K' is the input channel * kernel height * kernel width dimension of the unrolled inputs so that the im2col matrix has a column for each input region to be filtered. col2im restores the output spatial structure by rolling up the output channel N' columns of the output matrix.