1 #ifndef CAFFE_RELU_LAYER_HPP_ 2 #define CAFFE_RELU_LAYER_HPP_ 6 #include "caffe/blob.hpp" 7 #include "caffe/layer.hpp" 8 #include "caffe/proto/caffe.pb.h" 10 #include "caffe/layers/neuron_layer.hpp" 18 template <
typename Dtype>
30 virtual inline const char*
type()
const {
return "ReLU"; }
78 const vector<bool>& propagate_down,
const vector<
Blob<Dtype>*>& bottom);
80 const vector<bool>& propagate_down,
const vector<
Blob<Dtype>*>& bottom);
85 #endif // CAFFE_RELU_LAYER_HPP_ virtual void Forward_gpu(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable.
A layer factory that allows one to register layers. During runtime, registered layers can be called b...
Definition: blob.hpp:14
virtual void Forward_cpu(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Definition: relu_layer.cpp:9
virtual void Backward_cpu(const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom)
Computes the error gradient w.r.t. the ReLU inputs.
Definition: relu_layer.cpp:22
Rectified Linear Unit non-linearity . The simple max is fast to compute, and the function does not sa...
Definition: relu_layer.hpp:19
ReLULayer(const LayerParameter ¶m)
Definition: relu_layer.hpp:27
An interface for layers that take one blob as input ( ) and produce one equally-sized blob as output ...
Definition: neuron_layer.hpp:19
virtual void Backward_gpu(const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom)
Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_...
virtual const char * type() const
Returns the layer type.
Definition: relu_layer.hpp:30
A wrapper around SyncedMemory holders serving as the basic computational unit through which Layers...
Definition: blob.hpp:24