Caffe
batch_norm_layer.hpp
1 #ifndef CAFFE_BATCHNORM_LAYER_HPP_
2 #define CAFFE_BATCHNORM_LAYER_HPP_
3 
4 #include <vector>
5 
6 #include "caffe/blob.hpp"
7 #include "caffe/layer.hpp"
8 #include "caffe/proto/caffe.pb.h"
9 
10 namespace caffe {
11 
39 template <typename Dtype>
40 class BatchNormLayer : public Layer<Dtype> {
41  public:
42  explicit BatchNormLayer(const LayerParameter& param)
43  : Layer<Dtype>(param) {}
44  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
45  const vector<Blob<Dtype>*>& top);
46  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
47  const vector<Blob<Dtype>*>& top);
48 
49  virtual inline const char* type() const { return "BatchNorm"; }
50  virtual inline int ExactNumBottomBlobs() const { return 1; }
51  virtual inline int ExactNumTopBlobs() const { return 1; }
52 
53  protected:
54  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
55  const vector<Blob<Dtype>*>& top);
56  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
57  const vector<Blob<Dtype>*>& top);
58  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
59  const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
60  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
61  const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
62 
63  Blob<Dtype> mean_, variance_, temp_, x_norm_;
64  bool use_global_stats_;
65  Dtype moving_average_fraction_;
66  int channels_;
67  Dtype eps_;
68 
69  // extra temporarary variables is used to carry out sums/broadcasting
70  // using BLAS
71  Blob<Dtype> batch_sum_multiplier_;
72  Blob<Dtype> num_by_chans_;
73  Blob<Dtype> spatial_sum_multiplier_;
74 };
75 
76 } // namespace caffe
77 
78 #endif // CAFFE_BATCHNORM_LAYER_HPP_
virtual void Backward_cpu(const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom)
Using the CPU device, compute the gradients for any parameters and for the bottom blobs if propagate_...
Definition: batch_norm_layer.cpp:169
An interface for the units of computation which can be composed into a Net.
Definition: layer.hpp:33
A layer factory that allows one to register layers. During runtime, registered layers can be called b...
Definition: blob.hpp:14
Normalizes the input to have 0-mean and/or unit (1) variance across the batch.
Definition: batch_norm_layer.hpp:40
virtual const char * type() const
Returns the layer type.
Definition: batch_norm_layer.hpp:49
virtual void Reshape(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Adjust the shapes of top blobs and internal buffers to accommodate the shapes of the bottom blobs...
Definition: batch_norm_layer.cpp:52
virtual void Backward_gpu(const vector< Blob< Dtype > *> &top, const vector< bool > &propagate_down, const vector< Blob< Dtype > *> &bottom)
Using the GPU device, compute the gradients for any parameters and for the bottom blobs if propagate_...
virtual int ExactNumTopBlobs() const
Returns the exact number of top blobs required by the layer, or -1 if no exact number is required...
Definition: batch_norm_layer.hpp:51
virtual void Forward_cpu(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Using the CPU device, compute the layer output.
Definition: batch_norm_layer.cpp:87
virtual void LayerSetUp(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Does layer-specific setup: your layer should implement this function as well as Reshape.
Definition: batch_norm_layer.cpp:10
virtual int ExactNumBottomBlobs() const
Returns the exact number of bottom blobs required by the layer, or -1 if no exact number is required...
Definition: batch_norm_layer.hpp:50
virtual void Forward_gpu(const vector< Blob< Dtype > *> &bottom, const vector< Blob< Dtype > *> &top)
Using the GPU device, compute the layer output. Fall back to Forward_cpu() if unavailable.
A wrapper around SyncedMemory holders serving as the basic computational unit through which Layers...
Definition: blob.hpp:24